
Smart Battery System Specifications

System Management Bus
BIOS Interface

Specification

Revision 1.0
February 15, 1995

Copyright 1996, Benchmarq Microelectronics Inc., Duracell Inc.,
Energizer Power Systems, Intel Corporation, Linear Technology Corporation,

Maxim Integrated Products, Mitsubishi Electric Corporation,
National Semiconductor Corporation, Toshiba Battery Co.,

 Varta Batterie AG, All rights reserved.

Questions and comments regarding this
specification may be forwarded to:

Intel Corporation
Intel Architecture Labs Technical Support
PHONE: (8am-5pm PST) (800) 628-8686
FAX: (916) 356-6100
INTERNATIONAL (916) 356-3551
Email: IAL_Support@ccm.hf.intel.com

THIS SPECIFICATION IS PROVIDED “AS IS”, WITH NO WARRANTIES WHATSOEVER,
WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL ANY SPECIFICATION CO-OWNER BE LIABLE TO ANY OTHER
PARTY FOR ANY LOSS OF PROFITS, LOSS OF USE, INCIDENTAL, CONSEQUENTIAL,
INDIRECT OR SPECIAL DAMAGES ARISING OUT OF THIS AGREEMENT, WHETHER OR
NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
FURTHER, NO WARRANTY OR REPRESENTATION IS MADE OR IMPLIED RELATIVE TO
FREEDOM FROM INFRINGEMENT OF ANY THIRD PARTY PATENTS WHEN PRACTICING
THE SPECIFICATION.

System Management Bus BIOS Interface Specification

Version 1.0i

Table of Contents

1. INTRODUCTION 1

1.1 Scope 1

1.2 Audience 1

2. REFERENCES 2

3. DEFINITIONS 3

4. SMBUS BIOS INTERFACE 4

4.1 SMBus Driver Connection and Calling Interface 4
4.1.1 SMBus Installation Check (01H) 5
4.1.2 SMBus Real Mode Connect (02H) 6
4.1.3 SMBus 16-Bit Connect (03H) 7
4.1.4 SMBus 32-Bit Connect (04H) 9
4.1.5 SMBus Disconnect (05H) 11
4.1.6 SMBus Device Address (06H) 12
4.1.7 SMBus Critical Messages (07H) 13

4.2 SMBus Device Command Protocols 14
4.2.1 SMBus Request (10H) 14
4.2.2 SMBus Request Continuation (11H) 15
4.2.3 SMBus Request Abort (12H) 16
4.2.4 SMBus Request Data and Status (13H) 17
4.2.5 SMBus Protocol Codes 18
4.2.6 SMBus Request - Protocol Register Requirements 18
4.2.7 SMBus Request Continuation - Protocol Register Requirements 18
4.2.8 SMBus Request Abort - Protocol Register Requirements 19
4.2.9 SMBus Request Data and Status - Protocol Register Requirements 19

4.3 SMBus Device-to-SMBus Host 20

4.4 SMBus Error Detection and Signaling 20
4.4.1 SMBus Device Address Not Acknowledged Error 20
4.4.2 SMBus Device Signals An Error 20
4.4.3 SMBus Controller Detected Error 20
4.4.4 SMB-BIOS Detected Error 20

APPENDIX A - SMB EXTENSION FUNCTION SUMMARY 21

APPENDIX B - FIRMWARE ERROR CODES 22

SMB Error Descriptions 22
(00H or 80H) SMBus OK 22

System Management Bus BIOS Interface Specification

Version 1.0ii

(01H) Real Mode Connection Already Established 22
(02H) 16-bit Protected Mode Connection Already Established 22
(03H) 32-bit Protected Mode Connection Already Established 22
(04H) SMBus Not Connected 22
(05H) SMBus Int 15H Disabled 22
(06H) SMBus Address Request Out Of Range 22
(07H) SMBus Unknown Failure 22
(08H) SMBus Message List Empty 22
(09H) SMBus Message List Overflow 22
(0AH) SMBus Invalid Signature 23
(10H) SMBus Device Address Not Acknowledged 23
(11H) SMBus Device Error Detected 23
(12H) SMBus Device Command Access Denied 23
(13H) SMBus Unknown Error 23
(14H) SMBus Transaction Pending 23
(15H) SMBus No Transaction Pending 23
(16H) SMBus Request does not Match Pending Transaction 23
(17H) SMBus Device Access Denied 23
(18H) SMBus Timeout 23
(19H) SMBus Host Unsupported Protocol 24
(1AH) SMBus Busy 24
(1BH) SMBus SMI Detected 24
(86H) SMBus BIOS Interface Not Supported 24

SMB Error Code Groupings 25

SMB Specific Errors 25

SMB Specific Errors (cont) 26

APPENDIX C - EXAMPLE CODE FRAGMENTS 27

SMBus Installation Check 27

Real Mode Connect 27

SMBus 16-Bit Connect 28

SMBus 32-Bit Connect 29

SMBus ReadWord/WriteWord (SB AtRate function) 30

SMBus BlockRead (SB ManufacturerName function) 32

SMBus BlockWrite 33

SMBus Disconnect 34

SMBus Device Address (Get a list of the SMBus devices present) 34

System Management Bus BIOS Interface Specification

Version 1.0iii

REVISION HISTORY

Revision Number Date Notes

1.0 2/15/95 General Release

System Management Bus BIOS Interface Specification

Version 1.0iv

DO WE
NEED THIS
BLANK
PAGE ?

System Management Bus BIOS Interface Specification

Version 1.01

1. Introduction

The System Management Bus BIOS Interface Specification presents a standardized BIOS
interface to devices on the SMBus. It exposes the SMBus to device drivers and application
programs. In some instances, detailed information can be retrieved directly from a device like
the Smart Battery, but in others, such as a Power Plane Controller (a device that selectively turns
on and off power to devices on the system board), the BIOS may deny direct access.

The drawing below illustrates a typical SMBus system featuring an SMBus Host, Smart Battery,
Smart Battery Charger and other SMBus devices such as an LCD Backlight Controller, Power
Plane Controller etc.

Smart Battery

SMBus Interface

SMBus Host
SMBus Devices

Smart BatteryOther
Charger

1.1 Scope
This BIOS specification is designed to abstract the hardware implementation of the SMBus and
expose the SMBus in a standardized way to higher layers of software. Software will not need to
directly manipulate bits and bytes on the SMBus and is effectively isolated from needing to know
about that process. System implementation of the SMBus and how the BIOS communicates with
that implementation are NOT described by this specification. BIOS interaction with devices on
the bus are also outside the scope of this document.

1.2 Audience
The audience for this document includes:
• Implementors of SMBus BIOS interface
• Designers of device drivers for SMBus devices such as Smart Batteries, Smart Battery

Chargers, Smart Battery Selectors and other SMBus devices
• Designers of power management systems for portable electronic equipment powered by

Smart Batteries and other SMBus Devices
• Application Programmers

System Management Bus BIOS Interface Specification

Version 1.02

2. References

• Advanced Power Management BIOS Interface Specification v1.1, Intel
Corporation/Microsoft Corporation, September 1993

• Smart Battery Data Specification Revision v1.0, Duracell Inc./Intel Corporation, February,
1995

• System Management Bus Specification Revision v1.0, Intel Corporation, February, 1995

System Management Bus BIOS Interface Specification

Version 1.03

3. Definitions

•• APM: Advanced Power Management. A BIOS interface defined to coordinate system-wide
power management control via software.

• Smart Battery: A battery equipped with specialized hardware that can provide present state,
calculated, and predicted information about the battery to an SMBus Host under software
control. The access methodology to this data is described by this specification. The data
content and protocol are defined in the Smart Battery Data Specification and the System
Management Bus Specification.

• Smart Battery Charger: A battery charger that is designed to periodically communicate
with and charge a Smart Battery. It is capable of dynamically adjusting its charging
characteristics in response to the information provided by the Smart Battery.

• Smart Battery Selector: A SMBus device that selects which battery is connected to the
charger, which battery is powering the system, and which battery is communicating with the
SMBus host.

• SMBus Device: An electronic device or module that communicates via the SMBus with an
SMBus Host and/or other SMBus Devices. For example, an LCD Backlight Controller in a
notebook computer can be implemented as a SMBus Device.

• SMBus: The System Management Bus is a specific implementation of an I²C bus. The
SMBus specification (see references) describes the data protocols, device addresses, and
electrical requirements that are superimposed on the I²C bus specification. The SMBus is
used to physically transport commands and information between the Smart Battery, SMBus
Host, Smart Battery Charger, and other SMBus Devices.

• SMBus Host: A system that communicates with SMBus devices. It usually will embody
some or all of a system's power management control. To accomplish this, it communicates
with the Smart Battery and uses that information in executing its power management policy.

System Management Bus BIOS Interface Specification

Version 1.04

4. SMBus BIOS Interface

The SMBus BIOS interface provides a mechanism for device drivers, the OS, and application
software to access some or all of the SMBus devices and in particular, the Smart Battery System.
Exactly which devices are exposed and the extent of that exposure falls in the domain of the
system BIOS designer and is beyond the scope of this specification.

4.1 SMBus Driver Connection and Calling Interface
The SMBus BIOS Interface provides both real and protected mode calling interfaces.

A real mode (Int 15H) SMBus BIOS Interface is required for all implementations. This default
or not-connected interface uses the SMBus Access command code (53B0H) and the existing 15H
BIOS interface. The SMBus BIOS Int 15H interface must operate in either real mode or virtual-
86 mode on 80386 and later processors. Note: this document will refer to the real mode Int 15H
interface as simply Int 15H. The Int 15H interface will be disabled except as noted whenever any
connection exists.

It is required that support for 16-bit protect mode and 32-bit protect mode be provided; support
for the real mode connection is optional. The SMBus BIOS interface, when connected, is
accessed by calling through the real mode or protected mode entry points returned by the SMBus
Real Mode Connect, 16-Bit Connect, and SMBus 32-Bit Connect calls. Note: this document will
refer to the connected modes collectively as the Connected Mode.

Note: The contents of the resisters used by BOTH the successful and unsuccessful return may be
altered. The contents of the registers used to call a function may also be altered. The contents of
all other registers will remain unaltered.

System Management Bus BIOS Interface Specification

Version 1.05

4.1.1 SMBus Installation Check (01H)
This call allows the SMBus caller to determine if a system's BIOS supports the SMBus BIOS
Interface and if so, which version of the specification it supports. The values passed in BL and
CX are required to uniquely identify a legitimate caller to the SMBus BIOS Interface and, if not
present, will result in an SMBus invalid signature error.

The version number returned by this call is the highest level of SMBus BIOS Interface
specification supported by the SMBus BIOS.

The vendor-specified hardware code may be optionally used to identify the SMBus host
hardware. If this feature is not used, it must return zero. This return code may be used by
operating systems that do not want to use the BIOS services, but rather want to identify and
communicate directly with the hardware.

Call With
AX = 53B0H SMBus Access
BH = 01H SMBus Installation Check
BL = 72H
CH = 61H
CL = 64H

Returns
If function successful:
Carry = 0 SMBus is supported by BIOS
AH = 01H SMBus BIOS Interface Specification major

version number (in BCD format)
AL = 00H SMBus BIOS Interface Specification minor

version number (in BCD format)
BL = Number of SMBus Devices Present
CH = ASCII "i" character (69H)
CL = ASCII "A" character (41H)
DX = Vendor Specified SMBus Hardware Code

0000H indicates undefined hardware
If function unsuccessful:

Carry = 1

AH = Error code
0AH SMBus invalid signature
86H SMBus not supported

Supported
modes

Int 15H only (this function is always available)

System Management Bus BIOS Interface Specification

Version 1.06

4.1.2 SMBus Real Mode Connect (02H)
This call allows an SMBus caller to connect to the SMBus BIOS Interface in real mode. This
function returns the appropriate entry points into the SMBus BIOS.

The SMBus BIOS rejects an interface connect request if a connection already exists. When the
SMBus BIOS interface is connected in any mode, the default Int 15H interface will be disabled.

Call With
AX = 53B0H SMBus Access
BH = 02H SMBus Real Mode Connect
CH = ASCII "i" character (69H)
CL = ASCII "A" character (41H)

Returns
If function successful:
Carry = 0
AX = SMBus 16-bit code segment (real mode segment

base address)
BX = Offset of entry point into the SMBus BIOS

Interface
CX = SMBus 16-bit data segment (real mode segment

base address)

If function unsuccessful:

Carry = 1

AH = Error code
01H SMBus connect failed
02H SMBus already connected
0AH SMBus invalid signature
86H SMBus not supported

AL = If Error Code = 02H
01H Real mode connect already established
02H 16-bit connect already established
03H 32-bit connect already established

Supported
modes

Int 15H only (this function is always available)

System Management Bus BIOS Interface Specification

Version 1.07

4.1.3 SMBus 16-Bit Connect (03H)
This call allows an SMBus caller to connect to the SMBus BIOS Interface in 16-bit protect mode.
This function returns the appropriate entry points into the SMBus BIOS.

The SMBus BIOS rejects an interface connect request if a connection already exists. The default
SMBus BIOS Interface Int 15H real mode interface will be disabled when a protected mode
connection is established.

Call With
AX = 53B0H SMBus Access
BH = 03H SMBus 16-bit Connect
CH = ASCII "i" character (69H)
CL = ASCII "A" character (41H)

Returns
If function successful:
Carry = 0
AX = SMBus 16-bit code segment (real mode segment

base address)
BX = Offset of entry point into the SMBus BIOS

Interface
CX = SMBus 16-bit data segment (real mode segment

base address)

SI = CSeg length in bytes

DI = DSeg length in bytes

If function unsuccessful:

Carry = 1

AH = Error code
01H SMBus connect failed
02H SMBus already connected
0AH SMBus invalid signature
86H SMBus not supported

AL = If Error Code = 02H
01H Real mode connect already established
02H 16-bit connect already established
03H 32-bit connect already established

Supported
modes

Int 15H only (this function is always available)

System Management Bus BIOS Interface Specification

Version 1.08

Comments:

To use the SMBus BIOS 16-bit protected mode interface after the connection is in effect requires
the caller to set up two selector descriptor entries in either the GDT or LDT. These selectors
must be in consecutive order and must come in the sequence: 16-bit code segment, then data
segment. The calling code must build the descriptors using the corresponding segment base and
segment length information returned from this call. At the time the SMBus BIOS is called, these
descriptors must be valid and CPL=0. The code descriptors must also specify a ring-0 privilege
level.

The caller builds a far pointer to the SMBus BIOS 16-bit entry point using the 16-bit code
selector and the offset returned in BX from this call. Subsequent calls to the SMBus BIOS are
performed by loading the appropriate registers and doing a far call to this constructed 16-bit
entry point. The calling software must provide a 16-bit stack that is large enough to handle any
use by the BIOS plus handle any possible interrupts that occur.

System Management Bus BIOS Interface Specification

Version 1.09

4.1.4 SMBus 32-Bit Connect (04H)
This call allows an SMBus caller to connect to the SMBus BIOS Interface in 32-bit protected
mode. This function returns the appropriate entry points into the SMBus BIOS.

The SMBus BIOS rejects an interface connect request if any real or protected mode connection
already exists. The default SMBus BIOS Interface Int 15H real mode interface will be disabled
when a protected mode connection is established.

Call With
AX = 53B0H SMBus Access
BH = 04H SMBus 32-bit Connect
CH = ASCII "i" character (69H)
CL = ASCII "A" character (41H)

Returns
If function successful:
Carry = 0
AX = SMBus 32-bit code segment (real mode segment

base address)
EBX = Offset of the 32-bit code entry point into the

SMBus BIOS
CX = SMBus 16-bit code segment (real mode segment

base address)
DX = SMBus data segment (real mode segment base

address)

SI = 32-bit CSeg length in bytes

DI = DSeg length in bytes

If function unsuccessful:

Carry = 1

AH = Error code
01H SMBus connect failed
02H SMBus already connected
0AH SMBus invalid signature
86H SMBus not supported

AL = If Error Code = 02H
01H Real mode connect already established
02H 16-bit connect already established
03H 32-bit connect already established

Supported
modes

Int 15H only (this function is always available)

System Management Bus BIOS Interface Specification

Version 1.010

Comments:

To use the SMBus BIOS 32-bit protected mode interface after the connection is in effect requires
the caller to set up three selector descriptor entries in either the GDT or LDT. These selectors
must be in consecutive order and must come in the sequence: 32-bit code, 16-bit code, then data
segment. The calling code must build the descriptors using the corresponding segment base and
segment length information returned from this call. At the time the SMBus BIOS is called, these
descriptors must be valid and CPL=0. The code descriptors must also specify ring-0 privilege
level. A 16-bit code segment is also given, so that the SMBus BIOS may call 16-bit code from
the 32-bit interface if required.

The caller builds a far pointer to the SMBus BIOS 32-bit entry point using the 32-bit code
selector and the offset returned in EBX from this call. Subsequent calls to the SMBus BIOS are
performed by loading the appropriate registers and doing a far call to this constructed 32-bit
entry point. The calling software must provide a 32-bit stack that is large enough to handle any
use by the BIOS plus handle any possible interrupts that occur.

System Management Bus BIOS Interface Specification

Version 1.011

4.1.5 SMBus Disconnect (05H)
This call allows the connected SMBus caller to disconnect from the SMBus BIOS Interface. The
connection may be disconnected only by the connected driver calling with these defined values
into the SMBus BIOS interface. The default SMBus BIOS Int 15H real mode interface will be
re-enabled when the connection is terminated.

Call With
AX = 53B0H SMBus Access
BH = 05H SMBus Disconnect
CH = ASCII “i” character (69H)
CL = ASCII “A” character (41H)

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
If function unsuccessful:

Carry = 1

AH = Error code
04H SMBus not connected
05H SMBus Int 15H Disabled
0AH SMBus invalid signature
86H SMBus not supported

Supported
modes

Connected Mode only

System Management Bus BIOS Interface Specification

Version 1.012

4.1.6 SMBus Device Address (06H)
This call allows the SMBus caller to create a complete list of the SMBus device addresses present
in the system. This call does NOT return the reserved SMBus device addresses. It will return
the addresses of all SMBus devices, including those that the BIOS restricts access to. This call is
used repetitively until the caller gets the addresses of all the SMBus devices that are present in
the system. Note: This call will only return the one address per device. The least significant bit
of the address is a read/write bit; so for example, if 0x16 is returned, then the device may respond
at both addresses 0x16 AND 0x17.

This function may be used by systems that share a common I2C controller for both the SMBus
and ACCESS.bus. Since ACCESS.bus dynamically assigns addresses, it needs to know which
addresses are already in use. This function provides the ACCESS.bus host a list of addresses to
pre-load its "address-in-use" table.

Call With
AX = 53B0H SMBus Access
BH = 06H SMBus Device List
BL = xxH Address at position (0...n-1)
CH = ASCII “i” character (69H)
CL = ASCII “A” character (41H)

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
BH = Number of SMBus Devices

BL = SMBus Device Address at list position xxH

If function unsuccessful:

Carry = 1

AH = Error code
06H SMBus device address request out of range
0AH SMBus invalid signature
86H SMBus not supported

Supported
modes

Int 15H (this function is always available) and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.013

4.1.7 SMBus Critical Messages (07H)
This call allows the SMBus caller to retrieve SMBus device-to-SMBus host messages. These
messages are stored in a queue that is at least five (three-byte) messages long. Each successful
invocation of this call returns and removes the oldest remaining message from the message
queue.

If the message queue overflows, the oldest message will be lost and the call will return a Message
List Overflow error. The caller still needs to retrieve the remaining messages.

Call With
AX = 53B0H SMBus Access
BH = 07H SMBus Critical Messages
CH = ASCII “i” character (69H)
CL = ASCII “A” character (41H)

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
AL = SMBus Device Address
BX = SMBus Device Message
If function unsuccessful:

Carry = 1

AH = Error code
05H SMBus Int 15H Disabled
07H SMBus unknown failure
08H SMBus message list empty
09H SMBus message list overflow
0AH SMBus invalid signature
86H SMBus not supported

Supported
modes

Int 15H and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.014

4.2 SMBus Device Command Protocols
The following are commands that are used to read data from or write data to SMBus devices.
The SMBus Host acts as a master and the target SMBus Device as a slave.
Note: In the following descriptions, xxH means a value is required when calling the SMBus
BIOS and nnH means the BIOS returns a value.

The SMBus BIOS access is a two-phase process. Separating the request from the response allows
drivers access to the relatively slow SMBus devices without seriously impacting system
performance. For example, a Smart Battery may take over 30 ms to respond to a command.
Waiting for a BIOS return during this time might seriously impact system performance.

4.2.1 SMBus Request (10H)
This command requests access to a device on the SMBus. This command, in conjunction with
the SMBus Request Continuation command, is used to request access to the SMBus for all
SMBus protocols. The SMBus Command Complete call is (repeatedly) used to determine if and
when the SMBus command has been completed and to gather the results of the pending SMBus
transaction. Note: for the SMBus protocol BlockWrite, DH (MSB) will contain the block length
and DL (LSB) will contain the first byte in the block. Refer to tables 4.2.5 and 4.2.6.

Call With
AX = 53B0H SMBus Access
BH = 10H SMBus Request Command
BL = xxH SMBus Protocol
CH = xxH SMBus Device Address
CL = xxH SMBus Device Command
DH = xxH MSB data
DL = xxH LSB data

Returns
If function successful:
Carry = 0
AH = 00H, 80H SMBus OK - the high bit set indicates a

previously unreported SMI has taken place.
If function unsuccessful:

Carry = 1

AH = Error code
05H SMBus Int 15H Disabled
10H SMBus Device Address Not Acknowledged
11H SMBus Device Error Detected
12H SMBus Device Command Access Denied
13H SMBus Unknown Error
14H SMBus Transaction Pending
17H SMBus Device Access Denied
19H SMBus Protocol not Supported
1AH SMBus Busy
86H SMBus not supported

Supported
modes

Int 15H and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.015

4.2.2 SMBus Request Continuation (11H)
This command is used to continue requesting access to the SMBus for the SMBus write block
protocol. Refer to tables 4.2.5 and 4.2.7 for specific values. See the examples in Appendix C for
more details.

Call With
AX = 53B0H SMBus Access
BH = 11H SMBus Request Continuation Command
BL = xxH SMBus Protocol
CH = xxH SMBus Device Address
CL = xxH number of valid bytes in DX (1 or 2)
DH = xxH MSB data (CL = 1 or 2)
DL = xxH LSB data (CL = 2)

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
CL = 00H SMBus Hardware not ready for more data

01H SMBus Hardware ready for 2 more data bytes
If function unsuccessful:

Carry = 1

AH = Error code
05H SMBus Int 15H Disabled
11H SMBus Device Error Detected
13H SMBus Unknown Error
15H SMBus No Transaction Pending
16H SMBus Request does not Match Pending Transaction
18H SMBus Timeout
1BH SMBus SMI detected
86H SMBus not supported

Supported
modes

Int 15H and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.016

4.2.3 SMBus Request Abort (12H)
This command stops the current SMBus request. This command is used normally to terminate a
pending request after an SMBus SMI Detected error (1BH) is noted. However, it may be used to
terminate any pending request. Refer to tables 4.2.5 and 4.2.8 for specific values. See the
examples in Appendix C for more details.

Call With
AX = 53B0H SMBus Access
BH = 12H SMBus Request Abort Command
BL = xxH SMBus Protocol
CH = xxH SMBus Device Address
CL = xxH SMBus Device Command

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
If function unsuccessful:

Carry = 1

AH = Error code
05H SMBus Int 15H Disabled
13H SMBus Unknown Error
15H SMBus No Transaction Pending
16H SMBus Request does not Match Pending Transaction
86H SMBus not supported

Supported
modes

Int 15H and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.017

4.2.4 SMBus Request Data and Status (13H)
The SMBus Request Data and Status call is used to determine if and when a SMBus transaction
has been completed. When this call is made, the BIOS will go out to the hardware and if any
data is available, gather it one or two bytes at a time from the SMBus interface device before
returning. This command will be repeated until all the data available is retrieved or an error
detected. Note: for all SMBus protocols except BlockRead, the data is atomic and must be
returned in one call. (For example, a ReadWord command must return both bytes in the same
call.) For the BlockRead protocol, the first call to this service will return the block length in DH
and the first byte of the block in DL, if CL=2. For subsequent calls the next most significant data
byte will be returned in DH and least significant data byte in DL (if CL = 2). Refer to tables
4.2.5 and 4.2.9 for specific values. See the examples in Appendix C for more details.

Call With
AX = 53B0H SMBus Access
BH = 13H SMBus Request Complete Command
BL = xxH SMBus Protocol
CH = xxH SMBus Device Address
CL = xxH SMBus Device Command

Returns
If function successful:
Carry = 0
AH = 00H SMBus OK
CH = nnH 00H No data pending, transaction complete

01H No data pending, transaction continues
02H Data pending

CL = nnH Number of valid bytes in DX (0 ... 2)
DH = nnH MSB data
DL = nnH LSB data
If function unsuccessful:

Carry = 1

AH = Error code
05H SMBus Int 15H Disabled
10H SMBus Device Address Not Acknowledged
11H SMBus Device Error Detected
13H SMBus Unknown Error
14H SMBus Transaction Pending
15H SMBus No Transaction Pending
16H SMBus Request does not Match Pending Transaction
18H SMBus Timeout
1BH SMBus SMI detected
86H SMBus Not Supported

Supported
modes

Int 15H and Connected Mode

System Management Bus BIOS Interface Specification

Version 1.018

4.2.5 SMBus Protocol Codes
The following table lists the valid SMBus protocol codes:

SMBus Protocol Code

Quick Command 00H
Send Byte 01H
Receive Byte 02H
Write Byte 03H
Read Byte 04H
Write Word 05H
Read Word 06H
Block Write 07H
Block Read 08H
Process Call 09H
reserved 0AH ...FFH

4.2.6 SMBus Request - Protocol Register Requirements
The following table lists the registers used by an SMBus Request call for each SMBus protocol:

SMBus Protocol AX BH BL CH CL DH DL

Quick Command 53B0H 10H 00H Addr n/a n/a n/a
Send Byte 53B0H 10H 01H Addr n/a n/a data
Receive Byte 53B0H 10H 02H Addr n/a n/a n/a
Write Byte 53B0H 10H 03H Addr Cmd n/a data
Read Byte 53B0H 10H 04H Addr Cmd n/a n/a
Write Word 53B0H 10H 05H Addr Cmd MSB LSB
Read Word 53B0H 10H 06H Addr Cmd n/a n/a
Block Write 53B0H 10H 07H Addr Cmd len db1
Block Read 53B0H 10H 08H Addr Cmd n/a n/a
Process Call 53B0H 10H 09H Addr Cmd MSB LSB

4.2.7 SMBus Request Continuation - Protocol Register Requirements
The following table lists the registers used by an SMBus Request Continuation for each SMBus
protocol call:

SMBus Protocol AX BH BL CH CL DH DL

Quick Command n/a n/a n/a n/a n/a n/a n/a
Send Byte n/a n/a n/a n/a n/a n/a n/a
Receive Byte n/a n/a n/a n/a n/a n/a n/a
Write Byte n/a n/a n/a n/a n/a n/a n/a
Read Byte n/a n/a n/a n/a n/a n/a n/a
Write Word n/a n/a n/a n/a n/a n/a n/a
Read Word n/a n/a n/a n/a n/a n/a n/a
Block Write 53B0H 11H 07H Addr 1 or 2 db n db n+1
Block Read n/a n/a n/a n/a n/a n/a n/a
Process Call n/a n/a n/a n/a n/a n/a n/a

System Management Bus BIOS Interface Specification

Version 1.019

4.2.8 SMBus Request Abort - Protocol Register Requirements
The following table lists the registers used by an SMBus Abort call for each SMBus protocol:

SMBus Protocol AX BH BL CH CL

Quick Command 53B0H 12H 00H Addr n/a
Send Byte 53B0H 12H 01H Addr n/a
Receive Byte 53B0H 12H 02H Addr n/a
Write Byte 53B0H 12H 03H Addr Cmd
Read Byte 53B0H 12H 04H Addr Cmd
Write Word 53B0H 12H 05H Addr Cmd
Read Word 53B0H 12H 06H Addr Cmd
Block Write 53B0H 12H 07H Addr Cmd
Block Read 53B0H 12H 08H Addr Cmd
Process Call 53B0H 12H 09H Addr Cmd

4.2.9 SMBus Request Data and Status - Protocol Register Requirements
The following table lists the registers used by an SMBus Data_Status call for each SMBus
protocol:

SMBus Protocol AX BH BL CH CL

Quick Command 53B0H 13H 00H Addr n/a
Send Byte 53B0H 13H 01H Addr n/a
Receive Byte 53B0H 13H 02H Addr n/a
Write Byte 53B0H 13H 03H Addr Cmd
Read Byte 53B0H 13H 04H Addr Cmd
Write Word 53B0H 13H 05H Addr Cmd
Read Word 53B0H 13H 06H Addr Cmd
Block Write 53B0H 13H 07H Addr Cmd
Block Read 53B0H 13H 08H Addr Cmd
Process Call 53B0H 13H 09H Addr Cmd

System Management Bus BIOS Interface Specification

Version 1.020

4.3 SMBus Device-to-SMBus Host
In the case where an SMBus Device wants to communicate with the SMBus Host, the SMBus
Device temporarily becomes a master and treats the SMBus Host as a slave. These messages are
always sent using the SMBus Write Word protocol, where the command code is the sending
SMBus Device's slave address followed by a word of data that constitutes the message. The
SMBus Host is expected to queue up five of these messages. They are accessed by an entity that
periodically polls for their presence. (refer to the SMBus Device List function for details about
how to access these messages)

4.4 SMBus Error Detection and Signaling
The SMBus uses a simple system for signaling errors. This system is designed to minimize the
amount of traffic on the SMBus while allowing either the SMBus Host or any SMBus Device to
signal an error condition has been detected.

4.4.1 SMBus Device Address Not Acknowledged Error
When the target SMBus Device fails to acknowledge its SMBus slave address, the SMBus
controller is obliged to generate a stop condition on the SMBus. The SMB BIOS then signals the
caller by returning 10H in AH and setting the carry flag.

4.4.2 SMBus Device Signals An Error
When the target SMBus Device detects an error condition, it signals the SMBus controller by
failing to acknowledge any data byte. The SMBus controller then generates a stop condition on
the SMBus and the SMB BIOS signals the caller by setting the carry flag and returning 11H in
AH. Note: Because SMBus errors are device-specific, there is no standard method to return the
cause of the error. For example, the Smart Battery has a function that returns the reason for the
error but the Smart Charger does not have an error reporting mechanism.

4.4.3 SMBus Controller Detected Error
When the SMBus Controller detects an error, it generates a stop condition on the SMBus and
terminates the data transfer. The SMB BIOS then signals the error condition by setting the carry
flag and returning the appropriate error code in AH.

4.4.4 SMB-BIOS Detected Error
When the SMB BIOS detects an error, if necessary, it causes the SMBus controller to generate a
stop condition on the SMBus and terminates the data transfer. The SMB BIOS then signals the
error condition by setting the carry flag and returning the appropriate error code in AH.

System Management Bus BIOS Interface Specification

Version 1.021

Appendix A - SMB Extension Function Summary

This table summarizes the SMBus driver support functions.

SMBus Function Int 15 Real
Mode

16 Bit 32 Bit

reserved (00H) n/a n/a n/a n/a

SMBus Installation Check (01H) Yes No No No

SMBus Real Mode Connect (02H) Yes No No No

SMBus 16-bit Connect (03H) Yes No No No

SMBus 32-bit Connect (04H) Yes No No No

SMBus Disconnect (05H) No Yes Yes Yes

SMBus Device Address (06H) Yes Yes Yes Yes

SMBus Critical Message List (07H) Yes Yes Yes Yes

reserved (08H .. 0FH) n/a n/a n/a n/a

This table summarizes the SMBus data protocols.

SMBus Function Int 15 Real
Mode

16 Bit 32 Bit

SMBus Request (10H) Yes Yes Yes Yes

SMBus Request Continuation (11H) Yes Yes Yes Yes

SMBus Request Abort (12H) Yes Yes Yes Yes

SMBus Request Data and Status
(13H)

Yes Yes Yes Yes

reserved (14H .. FFH) n/a n/a n/a n/a

System Management Bus BIOS Interface Specification

Version 1.022

Appendix B - Firmware Error Codes

SMB Error Descriptions
(00H or 80H) SMBus OK
This error code, in conjunction with the carry flag clear, is returned to indicate that the call has
been successfully completed. The most significant bit will be set whenever an SMI that has
accessed the SMBus has occured and an SMBus BIOS transaction is not in progress. This bit
will be automatically cleared by an SMBus Request, SMBus Request Continuation, SMBus
Request Abort or SMBus Request Data and Status command. This bit allows device drivers to
detect if a sequence of commands that must completed without intervening commands was
interrupted by an SMI. For example, the Smart Battery's AtRateTimeRemaining command is
dependent upon the AtRate value. If this value was altered by a command issued in SMM code,
the return value could be incorrect.

(01H) Real Mode Connection Already Established
This error code, in conjunction with the carry flag set, is returned to indicate that the connect call
failed because a real mode connection already exists.

(02H) 16-bit Protected Mode Connection Already Established
This error code, in conjunction with the carry flag set, is returned to indicate that the connect call
failed because a 16-bit protected mode connection already exists.

(03H) 32-bit Protected Mode Connection Already Established
This error code, in conjunction with the carry flag set, is returned to indicate that the connect call
failed because a 32-bit protected mode connection already exists.

(04H) SMBus Not Connected
This error code, in conjunction with the carry flag set, is returned to indicate that the disconnect
call failed because no connection exists.

(05H) SMBus Int 15H Disabled
This error code, in conjunction with the carry flag set, is returned to indicate that the a caller
tried to access the function via an Int 15H call when the Int 15H interface was disabled.

(06H) SMBus Address Request Out Of Range
This error code, in conjunction with the carry flag set, is returned to indicate that the device
address call failed because the requested device was out of range. The requested device must be
between 0 and one less than the number of SMBus devices returned by the installation check call
or the device address call.

(07H) SMBus Unknown Failure
This error code, in conjunction with the carry flag set, is returned to indicate that the device
address call failed because of an unknown SMBus error.

(08H) SMBus Message List Empty
This error code, in conjunction with the carry flag set, is returned to indicate that the device
address call failed because the message queue was empty. No action required.

(09H) SMBus Message List Overflow
This error code, in conjunction with the carry flag set, is returned to indicate that the device
address call failed because the message queue overflowed. This bit will be set when the BIOS
detects that the message list queue has overflowed and will be reset when the error is returned.

System Management Bus BIOS Interface Specification

Version 1.023

(0AH) SMBus Invalid Signature
This error code, in conjunction with the carry flag set, is returned to indicate that the value
passed in CX was not "iA" (6941H). The call will fail unless a valid signature is is present in
CX when the call is made.

(10H) SMBus Device Address Not Acknowledged
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the slave device address was not acknowledged.

(11H) SMBus Device Error Detected
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the slave device signaled an error condition. The caller can read the device's error
register if one is available.

(12H) SMBus Device Command Access Denied
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host will not allow the specific command for the device being
addressed. For example, the SMBus host may not allow a caller to adjust the Smart Battery's low
capacity alarm value.

(13H) SMBus Unknown Error
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host encountered an unknown error.

(14H) SMBus Transaction Pending
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus BIOS already has a pending transaction.

(15H) SMBus No Transaction Pending
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus BIOS was expecting a pending transaction.

(16H) SMBus Request does not Match Pending Transaction
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the calling information does not match that for the pending transaction.

(17H) SMBus Device Access Denied
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host will not allow access to the device addressed. For example, the
SMBus host may not allow a caller to communicate with an SMBus device that controls the
system's power planes.

(18H) SMBus Timeout
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host detected an SMBus Timeout The timeout value is expected to be
in the range of 25 - 30 ms (> THog in the SMBus Specification), but its actual value will be
system-specific.

System Management Bus BIOS Interface Specification

Version 1.024

(19H) SMBus Host Unsupported Protocol
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host does not support the requested protocol. The SMBus BIOS is not
required to support all protocols, only those required by the devices present in the system.

(1AH) SMBus Busy
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the SMBus host reports that the SMBus is presently busy with some other
transaction. For example, the Smart Battery may be sending charging information to the Smart
Charger.

(1BH) SMBus SMI Detected
This error code, in conjunction with the carry flag set, is returned to indicate that the pending
SMBus transaction was interrupted by an SMI. The caller should issue and SMBus Request
Abort, then repeat the SMBus transaction or sequence of transactions as appropriate.

(86H) SMBus BIOS Interface Not Supported
This error code, in conjunction with the carry flag set, is returned to indicate that the SMBus call
failed because the host does support the SMBus BIOS interface.

System Management Bus BIOS Interface Specification

Version 1.025

SMB Error Code Groupings
SMBus Errors 00H-09H, 10H-1BH, 80H
SMBus BIOS Interface Not Present 86H
All other values reserved

SMB Specific Errors

Error Number SMBus Extension Function Error Messages Applicable SMBus Calls

00H, 80H SMBus OK SMBus Disconnect (05H)
SMBus Device Address (06H)
SMBus Critical Message List (07H)
SMBus Request (10H)
SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

01H Real mode connection already established SMBus Real Mode Connect (02H)
SMBus 16-bit Connect (03H)
SMBus 32-bit Connect (04H)

02H 16-bit connection already established SMBus Real Mode Connect (02H)
SMBus 16-bit Connect (03H)
SMBus 32-bit Connect (04H)

03H 32-bit connection already established SMBus Real Mode Connect (02H)
SMBus 16-bit Connect (03H)
SMBus 32-bit Connect (04H)

04H SMBus not connected SMBus Disconnect (05H)

05H SMBus Int 15H Disabled SMBus Disconnect (05H)
SMBus Critical Message List (07H)
SMBus Request (10H)
SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

06H SMBus device address request out of range SMBus Device Address (06H)

07H SMBus unknown failure SMBus Critical Message List (07H)

08H SMBus message list empty SMBus Critical Message List (07H)

09H SMBus message list overflow SMBus Critical Message List (07H)

0AH SMBus invalid signature SMBus Real Mode Connect (02H)
SMBus 16-bit Connect (03H)
SMBus 32-bit Connect (04H)
SMBus Disconnect (05H)
SMBus Device Address (06H)
SMBus Critical Message List (07H)

System Management Bus BIOS Interface Specification

Version 1.026

SMB Specific Errors (cont)

Error Number SMBus Extension Function Error Messages Applicable SMBus Calls

10H SMBus Device Address Not Acknowledged SMBus Request (10H)
SMBus Request Data and Status (13H)

11H SMBus Device Error Detected SMBus Request (10H)
SMBus Request Continuation (11H)
SMBus Request Data and Status (13H)

12H SMBus Device Command Access Denied SMBus Request (10H)

13H SMBus Unknown Error SMBus Request (10H)
SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

14H SMBus Transaction Pending SMBus Request (10H)
SMBus Request Data and Status (13H)

15H SMBus No Transaction Pending SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

16H SMBus Request does not Match Pending
Transaction

SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

17H SMBus Device Access Denied SMBus Request (10H)

18H SMBus Timeout SMBus Request Continuation (11H)
SMBus Request Data and Status (13H)

19H SMBus host unsupported protocol SMBus Request (10H)

1AH SMBus Busy SMBus Request (10H)

1BH SMBus SMI Detected SMBus Request Continuation (11H)
SMBus Request Data and Status (13H)

86H SMBus BIOS interface not supported SMBus Installation Check (01H)
SMBus Real Mode Connect (02H)
SMBus 16-bit Connect (03H)
SMBus 32-bit Connect (04H)
SMBus Disconnect (05H)
SMBus Device Address (06H)
SMBus Critical Message List (07H)

SMBus Request (10H)
SMBus Request Continuation (11H)
SMBus Request Abort (12H)
SMBus Request Data and Status (13H)

System Management Bus BIOS Interface Specification

Version 1.027

Appendix C - Example Code Fragments

This section contains example code fragments intended to illustrate the use of selected SMBus
BIOS Interface functions. In typical use, an SMBus driver will:
1. Test for the presence of an SMBus BIOS Interface
2. If one is present, will attempt to connect to the BIOS interface
3. Poll for events
4. Provide user services as required
5. Disconnect from the BIOS interface

SMBus Installation Check
mov ax, 53b0h ; SMBus access code
mov bh, 01h ; SMBus installation check command
mov bl, 72h ; an identifier to make sure we don't run into an

; unexpected int 15h function
mov ch, 61h
mov cl, 64h
int 15h
jc command_failed ; carry flag is set indicating an error

; check al for error code

cmp ch, 'i'
jnc install_chk_fail ; Bad return value - command failed
cmp cl, 'A'
jnc install_chk_fail ; Bad return value - command failed
; installation check succeeded - proceed

Real Mode Connect
smb_off dw 0
smb_seg dw 0

mov ax, 53b0h ; SMBus access code
mov bh, 02h ; real mode connect command
mov ch, 'i'
mov cl, 'A'
int 15h
jc command_failed ; carry flag is set indicating an error

; check al for error code

mov smb_off, bx ; we now have a pointer to the BIOS entry point
mov smb_seg, ax
; real mode connect succeeded - proceed

System Management Bus BIOS Interface Specification

Version 1.028

SMBus 16-Bit Connect
SMB16Entry dd 0

SMB16CodeSel dw 0
SMB16DataSel dw 0

SMB16CodeSeg dw 0
SMB16SegOff dw 0
SMB16DataSeg dw 0
SMB16DataSeg dw 0
SMB16DataLen dw 0

; perform SMB 16-bit protected mode connect
mov ax,53B0H
mov bh,04H
mov ch,’i’
mov cl,’A’
int 15h
jc connect_failed

; save off SMB Info
mov [SMB16CodeSeg],ax
mov [SMB16SegOff],bx
mov [SMB16DataSeg],cx
mov [SMB16CodeLen],si
mov [SMB16DataLen],di

; allocate two new consecutive LDT descriptors; one for data, one for code
; order MUST be code first, then data
.....
.....
mov [SMB16CodeSel],new code selector
mov [SMB16DataSel],new data selector

; initialize 16-bit protected mode code descriptor
; selector start at [SMB16CodeSeg]:0
; segment length of [SMB16CodeLen]
.....
.....

; initialize 16-bit protected mode data descriptor
; selector start at [SMB16DataSeg]:0
; segment length of [SMB16DataLen]
.....
.....

; build 16-bit entry point into SMB BIOS
mov ax,[SMB16codeSel]
mov [SMB16entry+2],ax
mov ax,[SMB16SegOff]]
mov [SMB16entry],ax

System Management Bus BIOS Interface Specification

Version 1.029

SMBus 32-Bit Connect
SMB32Entry dd 0

SMB32CodeSel dw 0
SMB32DataSel dw 0

SMB32CodeSeg dw 0
SMB32CodeLen dw 0
SMB16CodeSeg dw 0
SMB32Off dd 0
SMB32DataSeg dw 0
SMB32DataLen dw 0

; perform SMB 32-bit protected mode connect
mov ax,53B0H
mov bh,03H
mov ch,’i’
mov cl,’A’
int 15h
jc connect_failed

; save off SMB Info
mov [SMB32CodeSeg],ax
mov [SMB32Off],ebx
mov [SMB16CodeSeg],cx
mov [SMB32DataSeg],dx
mov [SMB32CodeLen],si
mov [SMB32DataLen],di

; allocate three new consecutive GDT descriptors; one for data, one for code
; order MUST be 32-bit code first, then 16-bit code, followed by data segment
.....
.....
mov [SMB32CodeSel],new 32-bit code selector
mov [SMB16CodeSel],new 16-bit code selector
mov [SMB32DataSel],new data selector

; initialize 32-bit protected mode code descriptor
; selector start at [SMB32CodeSeg]:0
; segment length of [SMB32CodeLen]
.....
.....

; initialize 16-bit protected mode code descriptor
; selector start at [SMB16CodeSeg]:0
; segment length of [SMB32CodeLen]
.....
.....

; initialize 32-bit protected mode data descriptor
; selector start at [SMB32DataSeg]:0
; segment length of [SMB32DataLen]
.....
.....

; build 32-bit entry point into SMB BIOS
mov ax,[SMB32codeSel]
mov [SMB32entry+2],ax
mov ax,[SMBSegOff]]
mov [SMB32entry],ax

System Management Bus BIOS Interface Specification

Version 1.030

SMBus ReadWord/WriteWord (SB AtRate function)
//
// Read Smart Battery At Rate Value
//
 //
 // Issue the request
 //
 IssueRequest
 ErrorCode = SMBusRequest(ReadWordProtocol, SmartBatteryAddress,
 AtRateFunctionCode)
 if SMBusOK
 // This is the normal exit
 // Schedule GetResults to get the results at later time ...
 end if

 Case (ErrorCode)
 SMBus Busy :
 // Re-schedule IssueRequest for a later time.
 // Other devices are using the bus. For example, the Smart Battery
 // is communicating with a Smart Charger

 SMBus Transaction Pending :
 // Re-schedule IssueRequest for a later time. Another transaction
 // is in progress.

 SMBus Unknown Error :
 // Retry as appropriate or giveup

 SMBus Device Access Denied :
 // The response is device specific
 // The BIOS will not allow access to this device

 SMBus Device Address Not Acknowledged :
 // The response is device specific
 // The device is not acknowledging - e.g., battery removed so it can not
 // acknowledge its address

 SMBus Device Error Detected :
 // The response is device specific
 // The device has signaled an error

 SMBus Device Command Access Denied :
 // The response is device specific
 // The BIOS will NOT allow this specific command to the device
 // For example - The BIOS may not allow a Smart Battery's alarm values to
 // be changed

 SMBus Protocol Not Supported :
 // Do not use this protocol
 // The BIOS MUST support all the protocols used by devices in the system

 SMBus Not Supported :
 // Don't try to access the BIOS again - it doesn't support SMB
 EndCase

 End IssueRequest

 //
 // Get the results
 //
 GetResults
 ErrorCode = SMBusDataAndStatus(ReadWordProtocol, SmartBatteryAddress,
 AtRateFunctionCode, &at_rate)
 if SMBus OK
 Return OK
 // were done - everything went OK
 end if

System Management Bus BIOS Interface Specification

Version 1.031

 case (ErrorCode)
 SMBus Transaction Pending :
 // Re-schedule GetResults for a later time.
 // A transaction is in progress, but is not complete enough to return data

 SMBus Device Address Not Acknowledged :
 // The response is device specific
 // The device is not acknowledging

 SMBus Device Error Detected :
 // The response is device specific
 // The device has signaled an error

 SMBus No Transaction Pending :
 // Do not call again until another request is made
 // No transaction is in progress - we shouldn't be here

 SMBus Timeout :
 // Try the request again
 // The bus has timed out and the pending transaction killed

 SMBus Busy :
 ErrorCode = SMBusRequestAbort(ReadWordProtocol, SmartBatteryAddress,
 AtRateFunctionCode)
 IssueRequest
 // Abort the request we think is pending then try the request again

 SMBus SMI Detected :
 ErrorCode = SMBusRequestAbort(ReadWordProtocol, SmartBatteryAddress,
 AtRateFunctionCode)
 return Interrupted by SMI to caller
 // We need to tell the BIOS to cancel the pending transaction
 // and return error to the caller so they can repeat the previous request
 end case
 end GetResults

// AtRate now contains the Smart Battery's AtRate value

System Management Bus BIOS Interface Specification

Version 1.032

SMBus BlockRead (SB ManufacturerName function)
//
// Read Smart Battery Manufacturer Name
//
 global first time flag
 //
 // Issue the request
 //
 IssueRequest
 ErrorCode = SMBusRequest(BlockReadProtocol, SmartBatteryAddress,
 ManufacturerNameFunctionCode)
 if SMBusOK
 first time flag = true
 // This is the normal exit
 // Schedule GetResults to get the results at later time ...
 end if

 Process Errors as in previous example
 End IssueRequest

 //
 // Get the results
 //
 GetResults
 ErrorCode = SMBusDataAndStatus(BlockReadProtocol, SmartBatteryAddress,
 ManufacturerNameFunctionCode, &data)
 if SMBus OK
 if first time flag
 buffer length = data.msb (DH)
 copy data.lsb (DL) into the buffer
 first time flag = false
 else

 copy data.msb (DH) into the buffer
 copy data.lsb (DL) into the buffer
 end if
 decrement buffer length by the byte count (1 or 2)

 if buffer length = 0
 return OK
 else
 re-schedule GetResults for a later time to get more data
 end if
 end if

 case (ErrorCode)
 SMBus Transaction Pending :
 // Re-schedule GetResults for a later time.
 // A transaction is in progress, but is not complete enough to return data

 SMBus Busy :
 ErrorCode = SMBusRequestAbort(BlockReadProtocol, SmartBatteryAddress,
 ManufacturerNameFunctionCode)
 IssueRequest
 // Abort the request we think is pending then try the request again

 SMBus SMI Detected :
 ErrorCode = SMBusRequestAbort(BlockReadProtocol, SmartBatteryAddress,
 ManufacturerNameFunctionCode)
 return Interrupted by SMI to caller
 // We need to tell the BIOS to cancel the pending transaction
 // and return error to the caller so they can repeat the previous request

 Other Errors : see previous example
 end case
 end GetResults

System Management Bus BIOS Interface Specification

Version 1.033

SMBus BlockWrite
//
// Write Block
//
 //
 // Issue the request
 //
 IssueRequest
 ErrorCode = SMBusRequest(BlockWriteProtocol, DeviceAddress,
 FunctionCode, BlockLength (DH) , DataBlock[0](DL))
 if SMBusOK
 // This is the normal exit
 // Schedule Continue to continue the block write transfer at a later time ...
 end if

 Process Errors as in previous example
 End IssueRequest

 //
 // Continue the block write transfer
 //
 Continue
 ErrorCode = SMBusContinuation(BlockWriteProtocol, DeviceAddress,
 OneOrTwoBytes, DataBlock[N] (DH), DataBlock[N+1] (DL))
 if SMBus OK
 if more data in block then
 adjust N index to point to next byte to transfer
 re-schedule Continue for a later time to send more data
 end if
 end if

 case (ErrorCode)
 SMBus SMI Detected :
 ErrorCode = SMBusRequestAbort(BlockWriteProtocol, DeviceAddress,
 FunctionCode)
 return Interrupted by SMI to caller
 // We need to tell the BIOS to cancel the pending transaction
 // and return error to the caller so they can repeat the previous request

 Other Errors : see previous example
 end case
 end Continue

System Management Bus BIOS Interface Specification

Version 1.034

SMBus Disconnect
mov ax, 53b0h ; SMBus access code
mov bh, 05h ; SMBus disconnect command
mov ch, 'i'
mov cl, 'A'
call far [smb_off] ; use the pointer from the connect call to access the BIOS
jc command_failed ; carry flag is set indicating an error

; check al for error code

; disconnect succeeded - proceed

SMBus Device Address (Get a list of the SMBus devices present)
count db 0

; read all device addresses

loop1: mov ax,53B0H
mov bh,06H
mov bl,[count]
mov ch,’i’
mov cl,’A’
int 15h
jc error_or_maybe_no_more_devices

;;; save off bl here (which contains this device’s address)

mov bl,[count]
inc bl
mov [count],bl

jmp loop1

###

