[转载资料]PCI IRQ Routing Table Specification与相关资料
自己比较懒,网络上的文章和资料有:1、PCI IRQ Routing Table Specification (中文请参照《BIOS研发技术剖析》中的描述)
microsoft: http://www.microsoft.com/whdc/archive/pciirq.mspx
2、PCI IRQ Routing on a Multiprocessor ACPI System
microsoft: http://www.microsoft.com/taiwan/whdc/system/CEC/ACPI-MP.mspx
I/O APIC演進
来自:http://www.four-stock.com/forum/viewthread.php?action=printable&tid=32&sid=JZS6Kb作者: Titan 時間: 2007-10-26 17:51 標題: I/O APIC演進~~~~~~~
此作者为转载作者,见下面网友的更正。
在x86歷史的演進中,有很多的BIOS工程師對於PCI IRQ Routing Table還是搞不清楚,我剛入行的時候也是一樣,對於這個東西一點概念都沒有,只知道是因為IRQ#不夠用,所以才需要去繞線(Routing)。
[為何要繞? 背景是什麼?]
依照我自己研究出來的歷史,我發現可能的原因是因為PCI設備越來越多,然後當時的中斷控制器是串聯的8259A,所以只有IRQ0~IRQ15可以用,且IRQ2已經連接 "僕8259" (第二顆中斷控制器),所以剩下來15支IRQ#可以用,但是又因為x86系統在早期的設計中,有些IRQ#已經分配給固定的設備使用,所以剩下來沒幾支可以用,可是設備又那麼多,所以如何去分配剩下來的IRQ就是大家討論的話題。
依照我查到的資料,早期的作業系統Windows 95年代左右,PCI設備要使用哪一支IRQ中斷線是靠PCI卡上面的"跳線"去控制,所以有可能會因為兩個PCI設備跳同一支"IRQ#"而造成衝突導致當機或是藍底白字。
後來改用BIOS Setup Menu內去控制,也就是可以進去BIOS設定畫面去設定IRQ分配。
因此為了解決PCI設備越來越多,但是IRQ不夠用的情況,所以微軟找上的晶片廠商也就是Intel合作開發PIRQ Route Controller,簡單說就是微軟想在他的作業系統上面支援"共享IRQ中斷架構"的驅動程式,但是需要硬體配合,因此定義了PCI IRQ Routing Table來規範硬體線路要怎樣繞線,且需要BIOS支援哪些資訊。
[為什麼是PCI設備而不是ISA設備?]
因為當時PCI Bus取代了傳統的周邊匯流排,所以PCI設備橫行,且設備需要服務就是透過中斷請求線IRQ#請求服務,對於OS端來說,這個服務就是驅動程式,至於CPU如何把控制權交給OS,則是靠IDT (interrupt Description Table),相關詳細資料請看Windows核心說明。
[跟DOS有關嗎?]
應該是無關,除非你在DOS下替你的PCI設備寫了一個驅動程式,或是你的PCI設備在DOS模式下要工作,不過應該也是沒啥機會這樣做吧,所以PIRQ Routing都是針對Windows作業系統而言,因為與設備驅動程式管理有關。
對於微軟自己定義的規範中,他最希望的就是能夠共享IRQ,所以在作業系統的改變就是要能分辨是哪個PCI Device透過IRQ發出請求,這是因為可能有好幾個PCI 設備都用同一支IRQ#中斷請求,所以OS 必須要能夠讓正確的驅動程式去服務發出中斷的設備,因此在撰寫OS 端的 Driver 時有了新的規範(針對共享IRQ的驅動程式有其規範)。
起先為了微軟的規範,Inetl 在南橋ICH上面多了幾支接腳(PIRQA~PIRQD),這幾支接腳又有對應的暫存器可以組態他們,例如下面範例:
PIRQA Register 60h bit3:0 <--PIRQA那隻接腳的設定暫存器在LPC Reg60h,其中bit3:0定義如下
=================================================================================
IRQ Routing — R/W. (ISA compatible.)
Value IRQ
0000b Reserved
0001b Reserved
0010b Reserved
0011b IRQ3
0100b IRQ4
0101b IRQ5
0110b IRQ6
0111b IRQ7
...
由上面範例可以看出每支PIRQ接腳都可以用"軟體"設定的方式橋接到IRQ#的任何一支。
也由於上面範例我們可以知道,OS 必須"先知道哪些IRQ可以被使用" 還有"哪些IRQ已經被使用",因為OS本身有自己配置IRQ#的演算方式,因此必須要先知道這些資訊,才有辦法去對PIRQ#繞線。
所以BIOS要提供"PIRQ Routing Table"給作業系統,然後OS就可以得到這些資訊,但是又因為OS版本不同(Win95/Win95/Win2000/WinXp or Acpi OS/non-ACPI OS..等分類),所以透過的傳遞管道也不同。
[後來的演變]
隨著PCI設備越來越多PIRQ只有4支接腳已經不夠用,所以後來擴充到8支,分別是PIRQA~PIRQH。
至今2007,OS 與 Intel 在這部份的演變也越來越複雜,因為後來的Intel 提出了新一代的中斷控制器APIC,所以在南橋ICH內就分成了兩種中斷控制器PIC與I/O APIC兩種,又因為OS演變成ACPI OS,所以原先PCI IRQ Routing Table Spec內所描述的方式就變成了ACPI Spec內的方式,簡單說就是BIOS傳遞PIRQ Routing方式也從Legacy OS方式演變成ACPI Mode方式(原本Table放在記憶體,現在改放在ASL Code)。
另外由於南橋ICH有兩種PIC,所以進入ACPI OS時是採用Legacy PIC mode 還是APIC mode 也會影響BIOS提供PIRQ Routing Table的方式,所以在ACPI Mode 底下又分成APIC Mode方式或是Non-APIC Mode(PIC Mode)方式。
[結論]
PIRQ#是南橋上面的接腳,連接到PCI 的INTA#~INTD#,原本INTA#~INTD#應該直接接到PIC上面的IRQ#接腳,但是因為IRQ#不夠用,所以微軟才與Intel合作,多做了幾支接腳出來,然後用軟體方式去配置這些多出來的接腳PIRQ#要繞線到哪個IRQ#,且作業系統的驅動程式可支援共享IRQ中斷,所以在Chipset 端把這種機制稱之為PIRQ Route Controller (具有PIRQ繞線功能的控制器,也就是某某一代的南橋開始把這個功能整合進去南橋晶片內)。
而BIOS所扮演的角色就是提供PIRQ Routing Table,這個Table的結構如同微軟的PCI IRQ Routing Table的規範,而當系統演變到ACPI 後,BIOS也改變了提供Table的方式,也就是改遵循ACPI Spec內的規範去提供這些資訊。
上述這些資訊只是我整理的筆記的一部分概要,詳細內容可以參考相關資料說明,畢竟我也是花了一個多星期的時間才整理出整個PIRQ的歷史,是對是錯我也不清楚,畢竟過去的架構我來不及參與,只能就我收集到的資料作一個描述,如有誤請先進指教。
[後記]
1)當ACPI OS 系統處在APIC Mode的時候,PIRQA~PIRQH會直接對應在APIC 的IRQ16~IRQ23而不需要繞線。
2)APIC 目前可提供的中斷請求線有 IRQ0~IRQ255 ,目前只使用IRQ0~IRQ23
3)APIC 前面的IRQ0#~IRQ15對應到PIC的IRQ0~IRQ15
4)PIRQ Routing 是指: IRQ不夠用才需要透過PIRQ Routing Controller繞線,所以只針對PIC,而APIC模式則不需要繞線。
4)APIC Mode只需要描述哪些PCI Device共用了哪些PIRQ線。
5)non-APIC mode則需要描述哪些PIC的IRQ#可以被使用,描述的內容如同PCI IRQ Routing Table,差別在於用ASL Code描述
6)APIC有分成Local APIC與I/O APIC,這邊所提到的都是指I/O APIC。
http://www.microsoft.com/whdc/archive/pciirq.mspx
http://www.microsoft.com/taiwan/whdc/system/CEC/ACPI-MP.mspx
从IRQ到IRQL(APIC版)
来自:http://www.nsfocus.net/index.php?act=magazine&do=view&mid=2534从IRQ到IRQL(APIC版)
作者:SoBeIt
出处:https://www.xfocus.net/bbs/index.php?act=ST&f=2&t=45502
日期:2005-02-04
事实上,老久的PIC在很早以前就被淘汰了,取而代之的是APIC。由于APIC可以兼容PIC,所以在很多单处理器系统上我们看到的PIC实际是APIC的兼容PIC模式。APIC主要应用于多处理器操作系统,是为了解决IRQ太少和处理器间中断而产生的,当然,单处理器操作系统也可以使用APIC(不是模拟PIC)。APIC的HAL和PIC的HAL有很大的不同,很突出的一个特点就是APIC的HAL不用再象PIC的HAL那样虚拟一个中断控制器,IRQL的概念已经可以通过中断向量的形式被APIC支持。事实上,因为被APIC所支持,所以在APIC HAL里IRQL的实现比PIC HAL那样虚拟一个中断控制器要简单得多了。
现在来简单介绍一下APIC的结构(关于APIC详细的描述请参考《IA-32 Inel Architecture Software Developer's Manual Volume 3 Chapter 8》)。整个APIC系统由本地APIC、IO APIC和APIC串行总线组成(在Pentium 4和Xeon以后,APIC总线放到了系统总线中)组成。每个处理器中集成了一个本地APIC,而IO APIC是系统芯片组中一部分,APIC总线负责连接IO APIC和各个本地APIC。本地APIC接收该处理器产生的本地中断比如时钟中断,以及由该处理器产生的处理器间中断,并从APIC串行总线接收来自IO APIC的消息;IO APIC负责接收所有外部的硬件中断,并翻译成消息选择发给接收中断的处理器,以及从本地APIC接收处理器间中断消息。
和PIC一样,控制本地APIC和IO APIC的方法是通过读写该单元中的相关寄存器。不过和PIC不一样的是,Intel把本地APIC和IO APIC的寄存器都映射到了物理地址空间,本地APIC默认映射到物理地址0xffe00000,IO APIC默认映射到物理地址0xfec00000。windows HAL再进一步把本地APIC映射到虚拟地址0xfffe0000,把IO APIC映射到虚拟地址0xffd06000,也就是说对该地址的读写实际就是对寄存器的读写,本地APIC里几个重要的寄存有EOI寄存器,任务优先级寄存器(TPR),处理器优先级寄存器(PPR),中断命令寄存器(ICR,64位),中断请求寄存器(IRR,256位,对应每个向量一位),中断在服务寄存器(ISR,256位)等。IO APIC里几个重要的寄存器有版本寄存器,I/O寄存器选择寄存器、I/O窗口寄存器(用要访问的I/O APIC寄存器的索引设置地址I/O寄存器选择寄存器,此时访问I/O窗口寄存器就是访问被选定的寄存器)还有很重要的是一个IO重定向表,每一个表项是一个64位寄存器,包括向量和目标模式、传输模式等相关位,每一个表项连接一条IRQ线,表项的数目随处理器的版本而不一样,在Pentium 4上为24个表项。表项的数目保存在IO APIC版本寄存器的位。APIC系统支持255个中断向量,但Intel保留了0-15向量,可用的向量是16-255。并引进一个概念叫做任务优先级=中断向量/16,因为保留了16个向量,所以可用的优先级是2-15。当用一个指定的优先级设置本地APIC中的任务优先级寄存器TPR后,所有优先级低于TPR中优先级的中断都被屏蔽,是不是很象IRQL的机制?事实上,APIC HAL里的IRQL机制也就是靠着这个任务优先级寄存器得以实现。同一个任务优先级包括了16个中断向量,可以进一步细粒度地区分中断的优先级。
在HAL里虽然HalBeginSystemInterrupt仍然是IRQL机制的发动引擎,但是因为有APIC的支持,它和其它共同实现IRQL的函数要比PIC HAL里对应的函数功能简单得多。HalBeginSystemInterrupt通过用IRQL做索引在HalpIRQLtoTPR数组中获取该IRQL对应的任务优先级,用该优先级设置任务优先级寄存器TPR,并把TPR中原先的任务优先级/16做为索引在HalpVectorToIRQL数组中获取对应的原先的IRQL然后返回。若IRQL是从低于DISPATCH_LEVEL提升到高于DISPATCH_LEVEL,还需要设置KPCR+0x95(0xffdff095)为DISPATCH_LEVEL(0x2),表示是从DISPATCH_LEVEL以下的级别提升IRQL。HalEndSystemInterrupt向本地APIC的EOI寄存发送0,表示中断结束,可以接收新中断。并还要判断要降到的IRQL是否小于DISPATCH_LEVEL,若小于则进一步判断KPCR+0x96(0xffdff096)是否置位,若置位则表示有DPC中断在等待(在IRQL高于DISPATCH_LEVEL被引发,然后等待直到IRQL降到低于DISPATCH_LEVEL),则将KPCR+0x95和KPCR+0x96清0后调用KiDispatchInterrupt响应DPC软中断。否则做的工作就是和HalBeginSystemInterrupt一样的过程:把要降到的IRQL转换成任务优先级设置TRP,并把久的任务优先级转成IRQL返回。KfRaiseIrql、KfLowerIrql之类的函数也是这么一回事,把当前IRQL转成任务优先级修改TPR,并把原先TPR的值转成原先的IRQL并返回。而现在软中断的产生也有了APIC支持,APIC通过产生一个发向自己的处理器间中断,就可以产生一个软中断,因为可以指定该中断的向量,所以软中断就可以区分优先级别,如APC_LEVEL、DISPATCH_LEVEL。产生软中断的函数一样还是HalRequestSoftwareInterrupt,该函数会先判断KPCR+0x95是否和要产生的软中断IRQL一样,若是的话则置位KPCR+0x96并返回,表示现在IRQL大于DISPATCH_LEVEL所以不处理DPC中断。否则以要产生的软中断的IRQL为索引从HalpIRQLtoTPRHAL取出对应任务优先级,并或上0x4000,表示是发向自身的固定处理间中断,并用该值设置中断命令寄存器ICW的低32位,然后读取中断命令寄存器ICW的低32位是否为0x1000,确定中断消息已经发送后就返回,这时候软中断已经产生。值得注意的是APIC HAL里没有HalEndSoftwareInterrupt这个函数。HAL为软中断的IRQL提供了一个固定的中断向量:
#define ZERO_VECTOR 0x00 // IRQL 00
#define APC_VECTOR 0x3D // IRQL 01
#define DPC_VECTOR 0x41 // IRQL 02
#define APIC_GENERIC_VECTOR 0xC1 // IRQL 27
#define APIC_CLOCK_VECTOR 0xD1 // IRQL 28
#define APIC_SYNCH_VECTOR 0xD1 // IRQL 28
#define APIC_IPI_VECTOR 0xE1 // IRQL 29
#define POWERFAIL_VECTOR 0xEF // IRQL 30
#define APIC_PROFILE_VECTOR 0xFD // IRQL 31
现在看一下一些重要的数据:
这是我写的代码输出的IO APIC重定向表内容:
Redirect Table Index: 0x17
Redirect Table[ 0]: ff
Redirect Table[ 1]: b3
Redirect Table[ 2]: ff
Redirect Table[ 3]: 51
Redirect Table[ 4]: ff
Redirect Table[ 5]: ff
Redirect Table[ 6]: 62
Redirect Table[ 7]: ff
Redirect Table[ 8]: d1
Redirect Table[ 9]: b1
Redirect Table[ a]: ff
Redirect Table[ b]: ff
Redirect Table[ c]: 52
Redirect Table[ d]: ff
Redirect Table[ e]: ff
Redirect Table[ f]: 92
Redirect Table: ff
Redirect Table: a3
Redirect Table: 83
Redirect Table: 93
Redirect Table: ff
Redirect Table: ff
Redirect Table: ff
Redirect Table: ff
这是IDT表中被注册的向量:
1f: 80064908 (hal!HalpApicSpuriousService)
37: 800640b8 (hal!PicSpuriousService37)
3d: 80065254 (hal!HalpApcInterrupt)
41: 800650c8 (hal!HalpDispatchInterrupt)
50: 80064190 (hal!HalpApicRebootService)
51: 817f59e4
(Vector:51,Irql:4,SyncIrql:4,Connected:TRUE,No:0,ShareVector:FALSE,Mode:Latched,ISR:serial!SerialCIsrSw(f3c607c7))
52: 817f5044
(Vector:52,Irql:4,SyncIrql:a,Connected:TRUE,No:0,ShareVector:FALSE,Mode:Latched,ISR:i8042prt!I8042MouseInterruptService(f3c57a2c))
83: 817d2d44
(Vector:83,Irql:7,SyncIrql:7,Connected:TRUE,No:0,ShareVector:TRUE,Mode:LevelSensitive,ISR:NDIS!ndisMIsr(bff1b794))
92: 81821384
(Vector:92,Irql:8,SyncIrql:8,Connected:TRUE,No:0,ShareVector:FALSE,Mode:Latched,ISR:atapi!ScsiPortInterrupt(bff892be))
93: 8185ed64
(Vector:93,Irql:8,SyncIrql:8,Connected:TRUE,No:0,ShareVector:TRUE,Mode:LevelSensitive,ISR:uhcd!UHCD_InterruptService(f3f0253e))
a3: 8186cdc4
(Vector:a3,Irql:9,SyncIrql:9,Connected:TRUE,No:0,ShareVector:TRUE,Mode:LevelSensitive,ISR:SCSIPORT!ScsiPortInterrupt(bff719f0))
b1: 818902e4
(Vector:b1,Irql:a,SyncIrql:a,Connected:TRUE,No:0,ShareVector:TRUE,Mode:LevelSensitive,ISR:ACPI!ACPIInterruptServiceRoutine(bffe14b4))
b3: 81881664
(Vector:b3,Irql:a,SyncIrql:a,Connected:TRUE,No:0,ShareVector:FALSE,Mode:Latched,ISR:i8042prt!I8042KeyboardInterruptService(f3c51918))
c1: 800642fc (hal!HalpBroadcastCallService)
d1: 80063964 (hal!HalpClockInterrupt)
e1: 80064858 (hal!HalpIpiHandler)
e3: 800645d4 (hal!HalpLocalApicErrorService)
fd: 80064d64 (hal!HalpProfileInterrupt)
fe: 80064eec (hal!HalpPerfInterrupt)
象a3、b1这类输出内容很多的是被硬件注册的中断向量,而象d1、e3这种输出内容少的是注册为了的HAL内部使用的中断向量和本地APIC中断向量
这是几个重要的数组:
HalVectorToIrql(这个数组是以向量除于16做索引):
8006a30400 ff ff 01 02 04 05 06-07 08 09 0a 1b 1c 1d 1e
HalpIRQLtoTPR:
8006a1e400 3d 41 41 51 61 71 81-91 a1 b1 b1 b1 b1 b1 b1
8006a1f4b1 b1 b1 b1 b1 b1 b1 b1-b1 b1 b1 c1 d1 e1 ef ff
HalpINTItoVector:
8006ada000 b3 61 51 a2 b2 62 91-a1 b1 71 81 52 82 72 92
8006adb000 a3 83 93 00 00 00 00-00 00 00 00 00 00 00 00
HalVectorToINTI:
8006a204ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a214ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a224ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a234ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a244ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a254ff 03 0c ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a264ff 02 06 ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a274ff 0a 0e ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a284ff 0b 0d 12 ff ff ff ff-ff ff ff ff ff ff ff ff
8006a294ff 07 0f 13 ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2a4ff 08 04 11 ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2b4ff 09 05 01 ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2c4ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2d4ff 08 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2e4ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
8006a2f4ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff
vBucket:
8006ae3002 02 02 03 03 03 03
举个例子来说明一下,在我虚拟机里SCSI Controller的IRQ是17(注意,已经大于16了),到重定向表中查找第17项,得到中断向量为0xa3,再看IDT,0xa3对应处理例程是SCSIPORT!ScsiPortInterrupt。
vBucket数组干啥用的?它就是用来分配新的向量。分配算法很简单,当要分配一个新的向量时,就在vBucket数组从右到左搜索最小的一个数i,该数对应在vBucket中索引为Index,新向量为(0x50+Index*16+i+1),新向量对应的IRQL为(4+i+1),同时会把vBucket中这个i加1,i不等大于16。象给出的这个vBucket,下一次计算时i=2, index=2。不过这些用于硬件的向量在IO系统初始化时调用HalpGetSystemInterruptVector分配好了,然后通过IoConnectInterrupt把IDT中注册的向量位置的例程注册为中断处理程序。这里并不是每个注册的向量都会对应中断处理程序,象上面给出的例子中,0xa1、0xa2、0xb1等向量就没有对应。
IRQL机制为内核同步提供了很大的便利,既对驱动开发者隐藏了底层中断机制,也方便了驱动开发者的内核同步。LINUX从2.5内核开始引进的软中断和任务队列等机制,很大程度上也来自windows这套机制的借鉴。
终于考完试,解放了,呵呵。这个东西其实还有很多可写的,只是没空再深入去分析了。在未来的64位系统里,APIC这种基于中断引脚的机制很快也要被SAPIC这种基于消息的更强大的机制所取代 I/O APIC演進
来自:http://www.four-stock.com/forum/ ... d=32&sid=JZS6Kb
作者: Titan 時間: 2007-10-26 17:51 標題: I/O APIC演進~~~~~~~
訂正一下..作者不是他..是下面的作者...
http://biosengineer.blogspot.com/ 网上搜集,证明转载过程中,有人不厚道,导致一错百错。 LZ很厉害,还帖子!支持。
希望LZ继续给我们带来有关BIOS的好东西。 请问楼主,对于PCI IRQ部分,PIC和APIC是如何判断规范的哦?无论什么情况下(DOS,APM系统,ACPI系统),IRQ0-15就是PIC,15-23就是APIC吗?我们在设备管理器里看到的IRQ共享,应该如何解释呢? PIC or ACPI is decide by OS , OS will use an APCI methord _PIC to inform ASL code which mode it use
**************************************************
Method(\_PIC,1)
{
Store(Arg0,PICM)
}
**************************************************
And in _PRT methord , it will return PIC or APIC mode routing table
***********************************************
Method(_PRT,0) {
If(PICM) { Return(AR04) }// APIC mode
Return (PR04) // PIC Mode
} // end _PRT
**********************************************
回复 7# 的帖子
IRQ0-15就是PIC,15-23就是APIC吗?不是.
这个看南桥的做法,Intel上面貌似是这样的,当nVidia就不一定了.
我们在设备管理器里看到的IRQ共享,应该如何解释呢?
APIC里面是可以共享IRQ的,你看到了,说明你的系统是使用APIC在. 太感谢各位的无私奉献!
页:
[1]